2017.02.09
Mátrixműveletek [doc] (Jandó Gábor)
Mátrixműveletek [link]
Mátrixműveletek [link]
2017.02.16
Page 1 [jpg] (Fülöp Diána)
Page 2 [jpg] (Fülöp Diána)
Page 3 [jpg] (Fülöp Diána)
2017.02.23
Page 1 [jpg] (Fülöp Diána)
Page 2 [jpg] (Fülöp Diána)
2017.03.02
Page 1 [jpg] (Fülöp Diána)
Page 2 [jpg] (Fülöp Diána)
Matek példa: Principal component analysis [pdf] (Radó János)
Matek példa: Frigyik András példája [m] (Buzás Péter)
Matek példa: Frigyik András példája valódi EEG-re. Matlab command History [m] (Buzás Péter)
Matek példa: Matlab adat (EEG) [mat] (Buzás Péter)
2017.03.09
Mesterséges idenghálózatok
Page 1 [jpg] (Fülöp Diána)
2017.03.16
Szünet
2017.03.23
Page 1 [jpg] (Fülöp Diána)
Page 2 [jpg] (Fülöp Diána)
2017.03.30
Megértettük az ICA-t!
Page 1 [jpg] (Fülöp Diána)
Page 2 [jpg] (Fülöp Diána)
Page 3 [jpg] (Fülöp Diána)
2017.04.06
Radó János előadása
2017.04.13
Gyakorlati elmélkedés az ICA-ról.
Példaprogramok futtatása.
Megfogalmazódott az az elképzelés, hogy inkább kevesebb faktort kell extrahálni, mint sokat, mert az robosztusabbnak tűnik. Így egymás után lehet a beazonosított faktorokat kivonni a szummált adathalmazból. Ez a stratégia a fastICA algoritmusnál működőképesnek tűnik.
2017.04.20
Akcióterv a FENs absztraktok érdekében.
Page 1 [jpg] (Fülöp Diána)
Page 2 [jpg] (Fülöp Diána)
Page 3 [jpg] (Buzás Péter)
Page 4 [jpg] (Buzás Péter)
Linkek
Kurtosis maximalisation ICA
FastICA algorithm
ICA algoritmusok összehasonlítása EEG vak forrás szeparálási feladatban
Letölthető ICA algoritmusok
ICA algoritmusok összehasonlítása (letölthető softverrel)
Extended Infomax ICA algoritmus (a király)
Főbb lényegi megállapítások
Fast ICA tulajdonságai
The FastICA algorithm and the underlying contrast functions have a number of desirable properties when compared with existing methods for ICA.
1. The convergence is cubic (or at least quadratic), under the assumption of the ICA data model (for a proof, see (Hyvärinen, 1999a)). This is in contrast to ordinary ICA algorithms based on (stochastic) gradient descent methods, where the convergence is only linear. This means a very fast convergence, as has been confirmed by simulations and experiments on real data (see (Giannakopoulos et al., 1998)).
2. Contrary to gradient-based algorithms, there are no step size parameters to choose. This means that the algorithm is easy to use.
3. The algorithm finds directly independent components of (practically) any non-Gaussian distribution using any nonlinearity g. This is in contrast to many algorithms, where some estimate of the probability distribution function has to be first available, and the nonlinearity must be chosen accordingly.
4. The performance of the method can be optimized by choosing a suitable nonlinearity g. In particular, one can obtain algorithms that are robust and/or of minimum variance. In fact, the two nonlinearities in (40) have some optimal properties; for details see (Hyvärinen, 1999a).
5. The independent components can be estimated one by one, which is roughly equivalent to doing projection pursuit. This es useful in exploratory data analysis, and decreases the computational load of the method in cases where only some of the independent components need to be estimated.
6. The FastICA has most of the advantages of neural algorithms: It is parallel, distributed, computationally simple, and requires little memory space. Stochastic gradient methods seem to be preferable only if fast adaptivity in a changing environment is required.
(Neural Networks, 13(4-5):411-430, 2000)
Ha regisztráltok az oldalunkon, akkor lehet chatelni is. A regisztrációt én hagyon jóvá, nem teljesen automatikus.